Body composition analysis of the pig by magnetic resonance imaging.
نویسندگان
چکیده
Magnetic resonance imaging (MRI) was used to measure, in vivo, the volume of several organs and tissues of a total of 111 pigs (males and females) ranging in BW from 6.1 to 97.2 kg. In one experiment the in vivo MRI volumes were compared to tissue or organ weights obtained by dissection. For internal organs, the correlation (R2) between MRI volume and dissected weight ranged from 0.64 (SE of estimation = 65 g) for the heart to 0.90 (SE of estimation = 125 g) for the liver. The MRI volume of the kidneys was approximately 10% less than the dissected weight, whereas the MRI volumes of the heart, liver, and brain exceeded the weights of dissected organs by 13, 17, and 26%, respectively. For fat and muscle tissues, the correlation between MRI volume and dissected weight ranged from 0.82 (psoas muscle) to 0.97 (total right ham muscles). The MRI volume of the backfat and shoulder muscles exceeded the dissected weights by approximately 2%, whereas the MRI volumes of the ham muscles, jowl fat, longissimus muscle, and psoas muscle were 2, 8, 18 and 20% less than their respective weights. In another series of experiments, MRI volume measurements of fat and muscle regions (Jowl fat, backfat, shoulder muscles, LD muscles, psoas muscles, ham muscles, a 10-cm section of the longissimus muscles and overlying fat, and a 15-cm section of the ham muscles and overlying fat) were evaluated by stepwise regression for the prediction of total body fat, lean, and protein. The best prediction of percentage total body fat was obtained using the fat volume from the 10-cm section of longissimus muscle and the fat:muscle ratio from the 15-cm section of the ham (R2 = 0.9). The best prediction of percentage total body protein was obtained using a combination of the volumes (as a percentage of BW) of jowl fat, backfat, shoulder muscle, and ham muscle (R2 = 0.62). The combination fat volume from the 10-cm section of longissimus muscle, the fat:muscle ratio from the 15-cm section of the ham, and the lean volume percentage from the 15-cm section of ham provided the best prediction of the percentage of total body lean (R2 = 0.88).
منابع مشابه
A Method for Body Fat Composition Analysis in Abdominal Magnetic Resonance Images Via Self-Organizing Map Neural Network
Introduction: The present study aimed to suggest an unsupervised method for the segmentation of visceral adipose tissue (VAT) and subcutaneous adipose tissue (SAT) in axial magnetic resonance (MR) images of the abdomen. Materials and Methods: A self-organizing map (SOM) neural network was designed to segment the adipose tissue from other tissues in the MR images. The segmentation of SAT and VA...
متن کاملAssessment of Organ Specific Iron Overload in Transfusion-dependent Thalassemia by Magnetic Resonance Imaging Techniques
The consequence of repeated blood transfusions in thalassemia is iron overload in different organs. Magnetic resonance imaging (MRI) is a reliable, non-invasive and accurate method for iron detection in various tissues, hence the introduction of MRI has revolutionized the management of these patients and improved the life expectancy of them. Cardiac MRI T2* has a profound effect not only on est...
متن کاملApplication of Magnetic Resonance Imaging (MRI) as a safe & Application of Magnetic Resonance Imaging (MRI) as a safe & non-destructive method for monitoring of fruit & vegetable in postharvest period
To investigate and control quality, one must be able to measure quality-related attributes. Quality of produce encompasses sensory attributes, nutritive values, chemical constituents, mechanical properties, functional properties and defects. MRI has great potential for evaluating the quality of fruits and vegetables. The equipment now available is not feasible for routine quality testing. The ...
متن کاملUse of Magnetic Resonance Imaging in Food Quality Control: A Review
Modern challenges of food science require a new understanding of the determinants of food quality and safety. Application of advanced imaging modalities such as magnetic resonance imaging (MRI) has seen impressive successes and fast growth over the past decade. Since MRI does not have any harmful ionizing radiation, it can be considered as a magnificent tool for the quality control of food prod...
متن کاملSoftware Tools for the Analysis of Functional Magnetic Resonance Imaging
Functional magnetic resonance imaging (fMRI) has become the most popular method for imaging of brain functions. Currently, there is a large variety of software packages for the analysis of fMRI data, each providing many features for users. Since there is no single package that can provide all the necessary analyses for the fMRI data, it is helpful to know the features of each software package. ...
متن کاملNon-uniformity of Clinical Head, Head and Neck, and Body Coils in Magnetic Resonance Imaging (MRI)
Introduction Signal intensity uniformity in a magnetic resonance (MR) image indicates how well the MR imaging (MRI) system represents an object. One of the major sources of image non-uniformity in high-field MRI scanners is inhomogeneity of radio-frequency coil. The aim of this study was to investigate non-uniformity in head, head and neck, and body coils and compare the obtained results to det...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Basic life sciences
دوره 60 شماره
صفحات -
تاریخ انتشار 1993